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The Transient Analysis of Certain TENI Mode

Four~Port Networks

G. F. ROSS, SENIOR MEMBER, IEEE

Abstract—This paper presents the transient analysis of certain

four-port TEM mode microwave networks. Flow graph techniques

are employed to determine in closed form the system function be-

tween two given ports. This representation reveals the pole-zero

pattern of the component which is used to graphically obtain the

amplitude spectrum (CW response).

In the time domain, the impulse response (the inverse transform of

the system function) is used to determine the step modulated re-

sponse of the network at its resonant frequency. This proves to be a

particularly easy task for certain symmetrical networks. The flow

graph technique is illustrated by analyzing three often used micro-

wave networks (namely; the ring hybrid, the 3-dB branch line cou-

pler, and the branch line phase shifter), and an estimate is made of

their “settling times” for a step modulated input.

Experimental methods are introduced which permit an investi-

gator to generate a 0.2 nanosecond pulse and/or a microwave step

modulated source. These test functions are then used to critically

evaluate the theoretical results in the laboratory.

I. INTRODUCTION

T

HE CONCEPTS of linear systems as they apply

to lumped networks are well known. Terms such

as the impulse and step response or system func-

tion of a net~rork have well-defined meanings and their

importance is understood. The terminology and con-

cepts of linear systems as they apply to microwave net-

works, however, have received only limited attention.

Getsinger [1], for example, studied the impulse and step

response of certain transmission line networks with the

aid of a computer. The purpose of this paper is to show

how the fundamental notions of linear system analysis,

including the use of flow graphs, can be applied to the

analysis of distributed networks. This approach yields

a very convenient formulation for a particular class

of microwave structures which operate in the TENI

mode resulting in closed form solutions.

The properties of microwave structures can be found

from a solution of IJlaxwell’s equations subject to appro-

priate boundary conditions. In general, these are linear

partial differential equations involving the three spatial

directions x, y, and z of the electric field (~) or the mag-

netic intensity (~) and time t. Certain geometrical con-
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figurations, namely “two-wire lines” or their con formal

equivalent, are able to operate with ~, and ~. equal to

zero (where it has been assumed that z is the direction

of propagation). These are called TEM modes, and net-

works capable of supporting them are commonly called

TENI components. From an academic viewpoint no

real structure can operate strictly in this mode since the

presence of resistance in the structure demands that E,

be nonzero. In practice, ho~rever, ~Z may be made much

smaller than the other components of ~ and the concept

of a TEhf mode is useful.

The distinguishing characteristics of TEh’I mode

propagation are that the concepts of voltage and current

can be legitimately applied and that the performance

of a TEN I mode component can be described by a

coupled pair of linear partial differential equations in-

volving only the two independent variables z and t.

Many commonly used TENI mode components such

as four-port hybrids, directional couplers, etc., employ

lengths of uniform TENI transmission lines (i.e., the

inductance and capacitance/unit length are constants,

independent of z) betw-een junctions. A uniform TENI

line has the following two-port system function: the

amplitude spectrum is constant, independent of fre-

quency; the phase function is linear with frequency, inl-

plying that the uniform line introduces no dispersion in

the time domain. In particular, the impulse response is

simply a delayed impulse.

Mrhere TEII lines are interconnected to form j unc-

tions, the impulse response between specified ports, in

general, consists of an infinite train of impulses whose

areas are functions of the reflection coefficients at these

junctions. In particular, ~vhere the line lengths between

junctions are integral multiples of a given length the

impulses are uniformly spaced and the impulsive re-

sponse is given by

k(f) = ~ .4,1$(t – kr) (1)
k=l

where

Ak

6 (t)

7

is a function of the reflection coefficients at the

junction

is the Dirac de] ta function

is a time delay depending on the geometry of the

network and the propagation constant of the

medium.
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When the impulse response of a linear, time invariant

net~vork consists of a train of impulses of varied weight-

ing, the response to an input f (t) may be found conveni-

ently by appropriately weighting and delaying replicas

of the input signal f(t). In particular, if the impulse

train is uniformly spaced A 0/2c seccmds apart, the re-

sponse to a step modulated signal of the form

~(t) = sin wd. f~(t) (2)

where

21rc
Zwo= 27rfo == –—

x,

can be found throughout any givenl half period by a

simple addition. This follows since the phase difference

between weighted replicas of the input signal is either

zero or 180°.

In this paper, the transient responses of certain TEM

components are evaluated in the tim,e domain by excit-

ing the network with a step-modulated signal at a car-

rier frequency corresponding to the nominal operating

frequency of the network, and mess uring their respec-

tive “settling” times. In the frequency domain, the amp-

litude spectrum is obtained graphically from the pole-

zero pattern of the network. The pole-zero pattern is

found by factoring the numerator and denominator of

the system function (i.e., the inverse transform of the

impulse response).

In Section II of this paper an analysis technique is

presented for determining in closed form the system

function of a matched four-port coupler consisting of an

interconnection of three-port TENI mode junctions.

The technique is illustrated in Secticm III where three

commord y employed microwave networks are analyzed.

Section IV discusses experimental methods devised for

verifying the analysis technique. The results and con-

clusion are summarized in Section V.

II. THE ANALYSIS TIZCHNIQUE

Flow graph techniques (as opposed to conventional

matrix methods), are chosen as the primary analysis

tool because 1) they afford a clear physical representa-

tion of the interaction of reflections between junctions,

and 2) by application of a simple formula they permit an

evaluation of the overall response o r system function

of the network in closed form, thus revealing the pole-

zero pattern of the system. This approach is not limited

to the analysis of symmetrical networks [2], but can

be applied to solving more general network configura-

tions. Previous applications of flow graph techniques

have been limited to the single-frequency analysis of

microwave networks [3], [4].

The flow graph representation of a given network is

not unique. That is, a network may be represented by

several flow graphs each having equal validity. Some

graphs may, conceptually, be easier to visualize or con-

struct. This will be demonstrated in the examples offered

in Section I I 1. A flo~v graph representing the intercon-

nection of four three-port TEM mode junctions forming

a four-port network is shown in Fig. 1. The output lports

of the network are assumed matched to the impedance

of the driving source which for convenience has been

normalized to one ohm. In the discussion that fclllows

the reference to “ports” refers to the physical network,

while the reference to ‘(nodes” refers to the topological

representation of the network, namely, the flow graph.

Each port in the network is represented by t~vo nocles in

the flow graph, for example, A and A‘. This is required

since waves traveling in a clockwise (CW) direction in

the network may experience a different reflection coeffi-

cient at a port than waves entering the same port from

a counterclockwise (CCW) direction. The si,gnal flcnv is

described as follows:

An incident (impulse) voltage entering pc~rt A is par-

tially reflected (due to mismatch) while the two trans-

mitted impulses travel in a cw direction to~vard pc,rt B

and simultaneously in a ccw direction toward port D.
In the graph cw signals travel along the outer scluare

entering the unprimed nodes; ccw signals travel along

the inner square entering the primed nodes. When the

transmitted impulse reaches port B, for example, a

fraction of the energy is reflected back to port A while

the transmitted impulse continues on to port C. The

impulse reflected toward port A now travels in a ccw

direction and in the graph enters node A‘. Part of this

signal is re-reflected toward port B (in a c~v direction)

therefore again entering node B in the graph forming

the closed loop (BL4 ‘k). The portion of the signal trans-

mitted beyond node A‘ travels in a ccw direction toward

node D’ resulting in similar reflections between nodes .4

and D‘. This process is continued until the transmitted

signals from nodes B’ and D enter nodes A‘ and A,

respectively, and the process repeats. The values of the

branch transmittances (for example, a, b, G, . . . ) in

Fig. 1 are chosen to be the Laplace transforms of the

voltage transfer coefficients between nodes. Since the

impulse response of each branch is a delayed impulse,

the Laplace transforms of the voltage transfer ccJeffi-

cients are of the fornl

a = a(p) = a’e–P’ (3)

where a’ is real and a function of the characteristic

impedances of the interconnecting lines at a junction;

r depends on the length and propagation constant of the

line; and ~ =u+jw, the complex frequency vari~:lble.

The equation at each node is simply

Einci~ent + Eref~e.te~= &rmsmitte~. (-k)

At node A, for example (4) becomes

d(t) + y(p) + ~(t) = a(p). (5)
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Fig. 1. Flow graph for the four-port network,

Since primed and unprimed nodes having the same

letter designations, physically, represent the same port

or junction in the network, special care must be exer-

cised in introducing the excitation and taking the out-

put from the graph. For example, if the excitation were

introduced directly into the nodes (A, A‘), representing

the input port, two fafse signals would appear at the

output port C. This follows since injection at these nodes

would produce an initial voltage at the output port of

(ifu) + (abt) + (Mt) + (eju) volts as indicated in Fig. 1.

From the actual network it is clear that the initial

voltage must be (abt) + (e~z~) volts. To prevent this from

occurring, the input excitation weighted by the appro-

priate branch transmittances is introduced into the

nodes which follow A, A‘ for both the cw and ccw waves.

To obtain the output signal at port C, the outputs from

both node C and C’ must then be combined. Mason’s

formula [5], or reduction theorem, can be used to

evaluate the graph. The formula states that transmis-

sion H between any two nodes in the graph is given by

(6)

where

H~ is the product of the branch transmittances of

the mth forward path

A=l–5L1+5L2–5L3 +.. . (-1)’ ~ L,.

L, is the product of the branch transmittances of

nontouching loops taken r at a time

r is an integer

n, is the number of closed loops

Am= the value of A for that part of the graph not

touching the mth forward path.

The use of this formula is demonstrated in the Ap-

pendix. In particular, when the line lengths between

junctions are integral multiples of a given length, the

system function representing the transmission from

ports A to C is given by

NCA (e–”’)
Hcl.(p) =

~(fj-.,) ‘ (7)

and for the class of TEM mode components is a meso-

morphic function. Thus, ~cA(@) is the ratio of two in-

finite polynomials in p, or

This function can also be expressed as an infinite train

of exponential by dividing the numerator of (7) by its

denominator. This result can also be obtained by taking

the Laplace transform of (1),

[
II&l(p) = J3 h(t) = ~ AjJi(f – k.)

k=l 1

= jj AkCPkT. (9)
k=l

Equating (8) and (9), one obtains

g (P - Pi)
= ~ Ake-p~r. (lo)

ii (P - Pj)
k=l

j=l

It is clear from (10) that if @ =Pa is a root of either the

numerator or denominator of (7) then

p=p. +ja
T

(11)

is also a root, where n is an integer. Therefore, the poles

and zeros of the system function are periodic in the

complex p plane, and are infinitely denumerable. The

introduction of the complex transformation

results in the periodic poles in the P plane coalescing

into a finite number of poles in the z domain. The system

function then becomes the ratio of two finite polyno-

mials in z.
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(13)
k=l l)(z)

The transformation also maps the @ axis in the p plane

onto the unit circle in the z plane; the left-half plane

(LHP) maps outside the unit circle. Thus, the amplitude

spectrum, defined as the magnitude of the system func-

tion, can be obtained in a conventional manner [6] by

graphical y evaluating Hc~ (z) on the unit circle

.4 CA(U) = I Hcf.l(z) I,=e–w. (14)

It should be noted that in sampled data system analysis,

it is conventional to define the s tralmform by introduc-

ing the transformation z = e+fl’. This transformation

nlaps the LHP inside the unit circle, and the poles and

zeros of the system function are crowded into a confined

region [7]. To increase the accurac v of the graphical

evaluation the transformation given in (12) is used.

The flow graph representation offered in Fig. 1 for the

four-pc~rt can be extended to include the general

matched network containing an interconnection of n

TEL! mode three-port junctions. The graph for this

configuration would consist of two concentric n sided

polygons having 2n nodes: n nodes for CNT and n nodes

for ccw waves with interconnecting loops between nodes

as shown in Fig. 1. For example, the topological repre-

sentation for a four-port branch-line coupler of three

branches consists of two concentric hexagons with two

directed interconnecting loops at each node.

III. APPLICATIONS

In this section the analysis technique will

trated by determining the transient behavior

commonly employed micro~vave components;

the ring hybrid, the 3-dB branch line coupler,

be illus-

of three

namely,

and the

branch line phase shifter.

A. The Ring Hybrid

The ring hybrid is employed as a sum and differencing

network in many microwave systelm applications [8].

In other instances it is used as a matched power di-

vider. The ring hybrid is shown in Fig. 2(a) and is

described by the normalized single frequency scattering

matrix

s=-:
42

0101

1 o–1 o

o–1 o 1

1010

(15)

where

b :Sa

a is the set of incident voltages

b is the set of reflected voltages.

Two in-phase signals at f~ entering ports A and C sum

coherently at port D (the sum port) and null at port B

(the difference port). Equation (15) is valid only at the

I D Y c

(Ll) RING HYBRID

rI r

L!s$J
x Y Y x

+rl =X

CI x B(

r
+r2=Y

x’ r2 ‘2
rl

D Y . . Y’ c
~ ‘n

(b) 3dB BRANCH LINE COUPLER -

Fig. ‘2. Flow graph for the ring hybrid and 3-d B branch
line coupler.

frequency~’o, for which the line length between junctions

are ~ or ~ wavelengths.

The flow graph for the ring hybrid [see Fig. 2(a) ] is

a specialized version of the graph of the four-port net-

work showm in Fig. 1. Here, network symmetry results

in many of the transmittances being equal. The trans-

mittances of the graph are evaluated as follo WS.

The reflection coefficient 17’ at each junction is de-

fined in terms of the “surge impedance” clf the Ilines,

and is given by

2–20
~f =

Z+zo

where

(16)

ZO is the characteristic impedance of the dr’iving

line

Z is the terminating impedance of the line (i.e.,

the surge impedance of two lines in parallel

20, Z are real numbers.

For e.~ample, a wave launched into the network is

attenuated by the factor x’ = 1 +171’ where 171’ is defined

as the reflection coefficient for a ZO equal one ohm line

driving two 20= <~ ohm lines in parallel. The trans-

mitted cw or ccw waves leaving junctions within the

network are attenuated by the factor y’ = I +1’z’where

J7,’ is defined as the reflection coefficient for a Zo ===<~

ohm line driving a one ohm and a ~~ ohm line in paral-

lel. In terms of their Lariace transforms, the branch
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transmittances are given by

{

* = x(p) = X’e–Pr = X’z

rl = rl(fl) = rl’z
(17)

( Y = Y(P) = Y“-” = Y’z

lr, = ~,(~) = r~~

f~here

~ is the time required for an impulse (~vave) to propa-

gate Ao/4 meters.

Note that

additional

and B’C)

–1 42
r; =

1+ <2’ J=l+dl”

four branches of the graph must contain an

factor of z’ (e.g., branches BC, B’C’, CB’,

to account for the increased line length in

these branches.

The system functions ~D~ (z) and Hc~ (z) for the ring

hybrid may be found by solving the graph shown in Fig.

2 (a) with the aid of Mason’s formula (6). For example,

the function HDA (z) can be evaluated with the aid of

a desk calculator as shown in the Appendix where the

denominator of the graph is found to be

D(Z) = 1 – 0.514722 – 0.0294z4 – 0.412z” – 0.029z’

— 0.015Z10 + o.00086zl~. (18)

The numerator is given by

ND~(z) = 0.485x(1 – 0.828z’ + 0.5147z4 – 0.5147zC

— 0.14152s – 0.032 z’0). (19)

In similar fashion

NB~(z) = O.485Z(l ——0.586z2 + 0.272z4 ——0.757zC

+ 0.10z8 – 0.029z1°). (20)

The formation of the graph in Fig. 1 assures that both

the polynomials N(z) and D(z) have the common

factor (1= z’). This serves as a useful check of the results

since substitution of z~ = 1 into (18) and (19) or (20)

must yield 0/0. It can be seen that the error introduced

by a desk calculator is s,mall.

The impulse response is obtained by simply dividing

(19) and (20) by (18) and inverting (term by term) the

resulting polynomial in z. Thus,

( )/’?D~(f) = ~ ~k~ t – (2k – 1) $- (21)
k=l

where

and

\vhere

T=4r=~
c

.4, = 0.485

A, = – 0.153

.4, = 0.186

( )k...(i) = 5 Lb t – (2??’2– 1) ; (22)

m=l

i, = 0.485

J, = – 0.034.

is = 0.128

These responses are plotted in Fig. 3. The step modu-

lated response d(t) of the network at jo = 4c/A o follows

directly from (21) or (22). For example, consider the

voltage tf~~ (t). Assuming the first cycle of the carrier

frequency is positive, it can be seen that 180° later the

second term appears with a negative amplitude which is

the correct polarity to add directly to the initial wave.

360° after the initiation of the step modulated signal,

the third term begins with the correct phase to add

coherently with the first two waves. The resonant build-

up in the ring hybrid is shown in Fig. 4. The asymptotic

value of the envelope of the magnitude of ti~A (t) is

therefore

I d~~(t)awm.tot. \ = 0.485+ 0.153+ 0.186 -.. .

= 0.707 volts

v-hich is the single frequency value of the voltage at

resonance. The envelopes of the step modulated re-

sponses at ports D and A are shown in Fig. 5. It can be

seen from the figure that both responses ‘(overshoot”

their asymptotic value. There is an approximately 16

percent overshoot in the sum arm of the ring. The

“settling time, ” or the time required for the magnitude

of the envelope of the step modulated response to settle

~vithin ~ 5 percent of its steady-state value is about 3

RF cycles; for example, 3 nanoseconds at 1000 Me/s.

The roots of the system functions H~~ (z) and HCA (z)

can be obtained on a desk calculator using Descartes’

method [9]. The results are

~,(Z2 + 2.93 + j3.7)(z2 – 0.068 f jl.22)
HDA (z) =

(Z2 – 20.318)(z2 + 1.387 + j4.463) (z’ + 0.529 ~ jl.525)
(23)

and

K-,(Z2 – 1.587 f jL67) (z’ 0.38 f jl.118)
(24)

‘B”’(z) = (ZZ – ~().318)(z2 + 1.387 f j4.463)(z2 + 0.529 + jl.525) “
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The poles and zeros of both system functions are plotted

in Fig. 6 in the Z2 plane (where Z2 = e–zp’). The amplitude

spectrum A (u) is obtained graphically by forming the

ratio of the product of vector magnitudes from the zeros

to a point on the unit circle to the product of the poles

to the same point on the unit circle. A plot of A ~~(ti)

is shown in Fig. 7 where the output voltage at resonance

has been normalized to one volt. As shown in Fig. ‘7, the

ratio of the voltage output at resonance to that at zero

frequency is equal to A@. This follows since at zero

frequency the one ohm resistances from arms B, C, and

D are all in parallel, and for an incident voltage of one

volt the generator voltage must equal two volts; hence,

(25)

lllore will be said about the utility of the pole zero dia-

gram when the results for the branch line coupler are

presented.
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B. The Branch Line Coupler

The 3-dB branch line coupler shown in Fig. 2 (b) is

often used as the basic building block in RF beam steer-

ing networks for electronic scanning radar systems. The

hybrid phasing or Butler matrix is an example of

multiple beam forming network employing 3-d B line

couplers [1 O]. The single frequency normalized scatter-

ing matrix of the coupler is given by

Il+j
01.

s=-: ––––l:J––l–
d2 I+jlo

(26)

+.il!

and is valid at the frequency for which the line lengths

between junctions are a quarter of a wavelength [II].

The flow graph for the coupler is similar to the general

graph shown in Fig. 1. The symmetry of the junction

in two orthogonal planes results in many of the trans-

mittances being equal. In this graph 1’1’ is defined as the

reflection coefficient for a ZO = 1/ <~ ohm line driving

two one ohm lines in parallel (that is, junctions B and D

for cw waves, or j unctions A and C for ccw waves), Sim-

ilarly, I’zl is defined for a 20= 1 ohm line driving a one

ohm line in parallel with a l/<~ ohm line. The corre-

sponding transmitted waves at each junction are

d=l+rl’ and y’ = 1 + I’z’ (27)

(28)

where

7 is the time required for an impulse to propagate

Ao/4 meters

The system functions 11~1 (z) and HCA (z) can be found

from the graph to be

D(z) = 1 – 0.402zZ – 0.5581z4 – 0.0688z6 + 0.0294z8

NEM(Z) = 0.485z[1 – 0.5148z’ – 0.3135z4 – 0.1715@]

~c~(z) = 0.485 z2[1.1716 – 0.6864z2 – OA85Z’] (29)

where

ATBA (z)
HE~ (Z) = —

.VCA (z)
Hm(z) = —

D(z) ; D(z) “

By long division one obtains

HzM(Z) = 0.485z(1 –0.11z’+0.20z4– 0.086zG+ .04z8+ , , ~ )

and

&A(Z) =0.485 z2(1.17–0.22z2+ 0.08z4–0.006z6– . . . ) (30)

The impulse response or the inverse transform of (30)

is plotted in Fig. 8: the step modulated response shown

in Fig. 9 follows. Once again the asymptotic value of the

magnitude of the envelope of the response approaches

0.707 volts. For example,

I &M($.w,w,.i. \ = 0.485(1+ 0.11+ 0.20+ 0.08+ ~ . .)

= 0.707 volts. (31)
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I d~~(t) I is a monotonic increasing function with a

settling time of approximate y 1* cycles: I dc~ (t) I over-

shoots about 2 percent and has a settling time of ~ cycle.

The system functions given in (30) may be written in

factored form as

C,(Z’ + 1.41 + jl.96)
H&.1 (z) =

(Z’ – 5.825) (z’ + 2.245 ~ jO.893)

and

AFICA(z) =
C&’ + 2.31)

(Z2 – 5.825) (z’ + 2.245 + jO.893)
(32)

where Cl and Cz are constants. The pole-zero diagram

obtained from (32) is plotted in Fig. 10: the amplitude

spectrum obtained from this diagram together with the

results for the ring hybrid is shown in Fig. 6. In general,

the pole zero plot is useful in describing, simultaneously,

the relative behavior between networks in either the

time or frequency domains. As can be seen in Fig. 10,

around zero frequency the poles PI, ,bz and zeros Z1 and

22 act like dipoles and approximately cancel. Only pole

p~ predominates. Therefore, it is reasonable to expect the

response around zero frequency to be similar to that of

a simple single tuned circuit. At Z2 = — 1 (i.e., the

resonant frequency of the hybrid) it can be shown, ge-

ometrically, that this frequency is a localized maximum

point of the response.

The pole-zero geometry for the ring hybrid is more

complicated than that found for the branch line coupler.

This might have been expected since the ring does not

possess the same degree of symmetry. One pair of com-

plex poles for the ring hybrid (see Fig. 6) is relatively

close to the unit circle. This suggests that the transient

behavior of the ring will be more susceptible to over-

shoot.

C. The Branch Line Phase Shifter

The branch line phase shifter shown in Fig. 11 is used

often in microwave circuits and in antenna feed net-

works for array systems [12]. It employs a 3-d B branch

line coupler whose output ports 2 and 3 are short cir-

cuited at a given distance L from the output reference

plane. At the resonant frequency of the coupler, a l-volt

signal incident on port 1 results in a IT volt signal into a

matched load at port 4, where I r I equals unity: the

network is lossless. T is a complex number whose phase

angle is a function of L. The distance L may be varied

electronically by employing diodes as shown in the

figure.

The 3-dB branch line coupler was amalyzed in Section

II I-B where the transmission from ports A to B and

A to C \vas evaluated. To analyze the phase shifter

shown in Fig. 11, use will be made of the results ob-

tained in Section III-B; however, a different flow graph

technique will be employed. This is advisable since the

introduction of short circuits at ports B and C intro-

duces too many additional loops taken “r” at a time

when evaluating the flow graph shown in Fig. 2 (b). The

flow graph will be formulated from the frequency-

dependent scattering matrix of the network. That is,

h = S(p)a (33)

where

rw

ubz
b= is the set of reflected voltages at each port

b~

b~

rail

H
az

a= is the set of incident voltages at each port.
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S(P) is the 4 by 4 complex frequency scattering ma-

trix of the 3-dB branch line coupler with matrix coeffi-

cients Sij(fl). The ports A, B, C, and D have been re-

labeled 1, 2, 3, and 4, respective y, to adhere to conven-

tional matrix notation. From the symmetrical proper-

ties of the 3-dB branch line coupler it is clear that

‘c~(P) = s31(~) = ~,,(~) = s,,(~) = s,,(j) = *

HBA(p) = s,,(~) = s,,(}) = s,,(p) = S34(P) = r (3’Q

and also

~DA(t) = S,,($) = S41(P) = s23(~) = s32(~) = Y

RAA(~) a S~~(fl) = S~.Z(P) = 5’33(fl) == SU(~) = S. (35)

The transmissions H~~ (p) and H~A (p) were not previ-

ousl y evaluated in Section II I-B but are required for

this analysis. They were evaluated using the flow graph

of Fig. 2 (b), with the proper modifications necessary

for coupling into and out of the graph. After factoring

out the common root of Z2 = 1 from the numerator and

denominator of each transfer function, one obtains

0.5686z2 + 0.2355z4
~=

1 + 0.5980z’ + 0.0399z4 – 0.0289zC

0.4853z + 0.2355z3 + 0.0833z5
yz

1 + 0.5980z2 + 0.0399z4 – 0.0289zE
(36)

0.3432z + 0.4020z3 + 0.0589zS
y=

1 + 0.5980z2 + 0.0399z4 – 0.0289z6

and

–0.4142 – 0.4731Z’ + 0.0121Z4 + 0.0709Z6
~=–

1 + 0.5980z’ + 0.0399z4 – 0.0289z6

where

z = e–PT as before.

As a result of the short circuits as ports 2 and 3, the

output signals at these junctions are totally reflected

with opposite signs and become the incident voltages

a~ and a3, respectively.

The flow graph for the complete branch line phase

shifter is thus a topological representation of (33) with

the applicable boundary condition; namely,

a2 = – b,Z’

a, = – b,Z’ (37)

z~ = ~–p(!2L/c)

where L is the distance to the diode short circuit.

The flow graph of the phase shifter is also shown in

Fig. 11. In terms of the graph parameters it can be

shown, using (6), that

z’ [(x’ + ?“)yz’ – Zm(l + Sz’)]
H4,(Z) = y +

1 + 2s2’ + (Z’)’(S2 – y’)
. (38)

To evaluate &fll (z), the values for x, r, y, and s given

in (36), must be substituted into (38). Numerically, this

is an awkward manipulation resulting in a numerator

consisting of 27 terms and a denominator of 29 terms.
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Fig, 1.3. Theamplitude spectrum and phase functiouof a
branch line phase shifter, L = O and L = x,/4.

The result is of the form

N(z)
H,I(z) = —

D(z)
(39)

\vhere

4v41(z) = [0.3432z + 0.8125z3 + . . “ -t 5 X 10–5Z17]

+ Z’[– O.28MZ – 1.37972’+ ~ . “ – 2 X 10-4Z’7]

+ (Z’) ’[0.0589Z + 0.4725z’ + ..3 X 10-4Z’7]

and

D(z) = [1 + 1.794Z’ + “ “ “ + Io-’z’”]

+ 2’[–0.8284 – 1.93702’ + “ ~ “ + lfJ-4~”]

+ (Z’)2[0.1716 + 0.3i’6~# + “ “ 10-4Z’8]

Selecting the length L to the diode short circuit conl-

pletely determines the system function Hll(z). To evalu-

ate the impulse response, N(z) must be divided by D(z)

in (39). This operation was performed by a digital com-

puter because of the numerical complexity of the ex-

pression. The resulting polynomial in z was used to de-

termine the modulated step response of the phase

shifter for L=O, L= Ao/8, L= Ao/4, and L=3~o/~. The

results are presented in Fig. 12(a)--(d), respectively,

where they are compared to the respo~lse of the matched

3-dB branch line coupler analyzed in Section III-B. Tt

can be seen that the settling time deteriorates with

increasing line length L, and approaches approximately

5 RF cycles for L = 3A0/8; for example, 5 nanoseconds at

“j-, = 1000 Me/s.

The amplitude spectrum was not evaluated from the

pole-zero pattern of (39) because of the high order of

the pol ynomiaIs. Instead, the digital cornpu ter was used

to substitute values for the radian frequency, and the

results appear in Fig. 13(a) for L =0, L =Ao/8. The

phase functions were also obtained and are plotted in

Fig. 13(b). These nonlinearities in Fig. 13(a) and (b)

suggest that the branch line phase shifter is likely to

introduce considerable distortion when used to process

\videband signals.

IV. TEST FUNCTYONS AND EXPERIMENTAL. RESULTS

A. Test Fz~nctions

The purpose of this section is to describe the experim-

ental techniques used to verify the theoretical results

presented in the previous sections. 1t was shown in these

sections that the impulse response of a network is a par-

ticularly important theoretical concept, but it is clear

than an impulse function can neither be generated nor

displayed in the laboratory. There are, however, two

test functions which are of practical importance and are

simply related to the impulse function. They are 1) the

unit pulse of duration A and 2) the unit step function.

For example, assume a TEM component (as described

in III) is excited by a unit pulse of duration A, and the

response r(t), a ‘(pulse train, ” is measured. Analytical y,

r(t) can be found using (1) to be

r(t)= ~A(t)*lz(f) = [u(t) – z~(t— A)]* ~ /4!/J(t– kr)
.&l

.

= ~ A,,[IL(t - b) - ZL(t - A - k,)] (40)
k=l

where

flA(t)=l III<A

* indicates convolution

h(t) is the impulse response of the network

.4,, are the unknown coefficients of the impulse re-

sponse.

If A <~ successive output pulses will not overlap and the

amplitudes of pulses in the train are a direct measulre of

the .41, coefficients.

Often it is more convenient to generate a very fast

step function as opposed to a narrow pulse. The re-

sponse of a linear, time invariant network to this input

is approximately the integral of the impulse response.

This result can also be used, directly, to find the

response to any other input by employing the Duhamel

integral,

Another input which has considerable practical sig-

nificance is the step modulated signal described by (2).

This test signal has its principle spectral components

concentrated around the nominal operating frequency
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of the component: the spectrum of the unit pulse and

the unit step functions have their maxima at zero fre-

quency. Thus, the test results obtained using a step

modulated function can be interpreted directly at the

microwave frequencies while the other two test func-

tions must be further manipulated, mathematically.

It was shown in the illustrative examples that the im-

pulse response of a symmetrical TEM mode network con-

sists of a train of impulses where each impulse is sepa-

rated by one-half of the resonant RF period. For exam-

ple, at ~0 = 1 GHz, this spacing equals one-half nano-

second. Thus, if the unit pulse is employed as the

test source, its duration should be A<O.5 X 10-9 seconds.

If the test signal approximates the unit step function,

its rise time should also be less than 0.5 X 10–9 seconds.

The step function can be approximated by using a

tunnel diode pulser. The rise time of the resulting output

signal is approximately 150 picosecond and its magni-

tude is 0.25 volts. This signal is fed to the component

under test and the response is displayed on a wideband

sampling oscilloscope. A particularly useful instrument

which can be appropriately connected to make trans-

mission measurements of this type is the HP#1014A

Reflectometer [13]. The unit contains a step function

generator, a sampling oscilloscope, and appropriate

synchronization and calibration circuitry. The output

signal from the step generator is shown in Fig. 14(a).

The step function generated by the reflectometer can

be used to generate a very short pulse with the aid of

the network shown in Fig. 14(b). It can be shown that

the unit step response of this network is a pulse of 1/2

volt amplitude and duration A, equal to 2L/c, where L

is the length of the 25 ohm stub and c is the speed of

light in the medium [14]. The pulse forming network

was constructed using strip line techniques. The output

from this network is shown in Fig. 14(c). hTote that the

resulting pulse width measured at the half power points

is approximately 200 picosecond.

The stub concept can be extended to generate a step

modulated signal where the buildup time of the wave-

form is less than 1/4 RF cycle. This generator is shown

in Fig. 15(a). It consists of a cascade connection of

TEM mode “T” networks similar to the one shown in

Fig. 14(b). The first two stubs which are of equal length

are short-circuited. Succeeding stubs are open circuited

and are of increasing length. The output from the last

“T” section is fed into a low-pass filter (LPF) and then

to the network under test. It can be shown that the

number of square cycles N generated at the output of

the kth stub is given by [15]

N = Zk–, (41)

while the output voltage amplitude VO is given by

Vo = 2–k volts. (42)

The cutoff frequency of the LPF is selected to attenuate

the odd harmonics (i.e., round off the corners of wave-

Fig. 14. 200 picosecond pulse generator.

la 10
91t)

.

(a)

(b) 16 CYCLES OF RF, ~=1300 iiz ;

TIME SCALE : I mec / cm

Fig. 15. The synthetic generation of a step
modulated microwave source.

form). A 16 cycle, 1300 MHz waveform generated using

this technique is shown in Fig. 15 (b).

It should be noted that in the network shown in Fig.

15 (a) there are reflections between junctions due to

waves traveling in the back direction that eventually

are re-reflected toward the output terminal. If the line

lengths between stubs, however, are made longer than

twice the length of the last stub, these undesired re-

flections are far removed from the trailing edge of the

generated waveform.
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B. Experimental Results

1) The Ring Hybrid: An L-band ring hybrid de-

signecl to operate at 1315 MHz was selected for test.

The unit used a strip line construction with air as the

dielectric; thus, responses are expected to be separated

by 0.38 nanoseconds at the output port. The experi-

mental results obtained using the step generator output

of the HP .Model 1014A reflectorneter are shown in

Fig. 16(a) and (b) for the transmission between the

ports A and D and B, respectively. These results must

be compared with the integral of the results already

presented in Fig. 3. It can be seen that the amplitude

and sign of the various steps that were obtained agree

(at least qualitatively) with the theoretical results. The

lack of resolution in the pictures is attributed to the

finite rise time and overshoot in the step generator.

When the step modulated source shown in Fig. 15 is

connected to the network under test, the results [see

Fig. 16(c) and (d) ] agree with the responses predicted

in Section III.

branch line coupler.

Fig. 18. The step and pulse response of a branch
line phase shifter, L = ko/4.

2) The Branch Line Coupler: The step response and

the pulse response (i.e., generated by using the network

shown in Fig. 14) are shown in Fig, 17 (a) and (b). A

3-dB branch line coupler designed to operate at 1315

MHz was also constructed in strip line with an air di-

electric having responses separated by 0.38 nanoseconds

which are experimental y verified. It can be seen that

the amplitude of each pulse in Fig. 17(a) and (b) are in

good agreement with the results predicted in Fig. 8.
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3) Branch Line Phase Shifte~: To experimentally

verify the theory of the branch line phase shifter extra

line lengths with short circuited terminations were

added at the output ports of the coupler designed to be

resonant at 135 MHz. Lowering the resonant frequency

of the coupler by a factor of ten significantly improves

the experimental accuracy by reducing the time domain

aliasing errors. The line lengths to the short circuit were

adjusted to be one-quarter wavelength. The relative

amplitudes of successive impulses can be obtained

theoretically by dividing NL1(z) by D(z) in (39). The

results are

H14(z) == 0.343z + 0.19723 – 0.624z5 + 0.0613z7

– 0.124Z9 + . . . . (43)

The experimental results shown in Fig. 18 closely con-

firm these results. It should be noted that a discrepancy

does occur in the magnitude of the 4th pulse in Fig. 18;

namely, an amplitude of 0.10 volt was observed as com-

pared to the theoretically predicted value of 0.062 volt.

The discrepancy is probably due to tolerance errors in

the construction of the component. The amplitude of

the 4th pulse is due to the subtraction of large and

almost equal reflections and hence sensitive to junction

tolerances.

V. %Jll~AllY

This paper has presented a technique for analyzing

the transient behavior of certain four port TENI mode

networks by revealing the system function in closed

form. Although the examples presented in Section III

concentrated on symmetrical networks it is clear that

the technique presented applies equally well to unsym-

metrical network configurations.

It was shown how the inverse transform of the system

function (i.e., impulse response) of a TEM mode net-

work was a very useful concept since the response to any

other input could be expressed as an appropriately

weighted and displaced replica of the input. In par-

ticular it was shown that the step modulated response

for certain symmetrical networks at the resonant fre-

quency was relatively simple to obtain. By factoring

the system function one could obtain the pole zero

plot which lead readily to a graphical evaluation of the

amplitude spectrum. Further, the relative locations of

the poles and zeros were used to gain physical insight

regarding the transient and single frequency behavior

of various devices.

Several time domain experimental techniques were

introduced to help verify the theoretical results. They

involved the use of the step, pulse, and step modulated

functions. Since the distances between junctions in

microwave networks are usually a fraction of the reso-

nant wavelength, the testing requires a facility with

fractional nanosecond pulse technology. The step modu-

lated source proved to be a particularly useful test

source since it tested the components directly at the

microwave resonant frequency and did not require fur-

ther mathematical manipulation.

The test sources were used to excite the three com-

ponents theoretically analyzed in Section III; namely,

the ring hybrid, the 3-d B branch line coupler, and the

branch line phase shifter. The experimental results

agreed closely with that predicted by the theory.

It was indicated how the flow graph technique could

be extended to find the impulse response of a matched

interconnection of n three port junctions. The graph

for this network port would contain 2n nodes: n nodes

for cw and n nodes for ccw waves and would resemble

the graph shown in Fig. 1. Admittedly, the evaluation

of this graph using (6) (i. e., the calculation of nontouch-

ing loops taken “r” at a time) becomes awkward.

In closing it should be noted that this paper is an

abridged version of a study which included the transient

analysis of other TEM components, waveguide com-

ponents, cascade connections of these components, and

also the analysis of a completely distributed feed net-

work for an array system (viz., the Luneberg Lens) [16].

APPENDIX

FLOW GRAPH EVALUATION OF THE RING HYBRID

In the appendix the evaluation of the Flow Graph

representing the ring hybrid shown in Fig. 2(a) is pre-

sented. The solution to this graph for the system func-

tion HD~ (z) is found by evaluating the individual terms

in the numerator and denominator of (6). For conve-

nience these terms are presented in tabular form. The

solution is as follows, Tables I–IV.

Substituting the values of 12, and y as defined in (17)

into the preceding tables, and adding terms in accord-

ance with (6) yields (after grouping similar powers of z)

the denominator of the required system function,

D(z) = 1 – 0.5417z~ – 0.02944z4 – 0.4121z6

– 0.02944z8 – 0.01515z’0 + 0.00086z’Z. (44)

The evaluation of the numerator of the system func-

tion ~~A(~) follo~~-s in a similar manner. It can be seen

that the input branch terminating on port D’ produced

5 forward paths: the input branch terminating on port

B produces 8 forward paths for a total of 13 forward

paths. These forward paths are identified in Table V.

Grouping numerator transmittances according to

similar powers of z, it follows that

f~DA(Z) - O.485Z(l — 0.828z2 + 0.5147z4 — 0.5147z6

— 0.1451z8 – 0.032z1°) (45)

and finally the system function HDA (z) is obtained by

dividing (45) by (44)

0.485(1 – 0.828z2 + 0.51472z4 – 0.514726

— 0.1415z8 – 0.032z’0)
HZM (z) =

1 –0.5147zZ – 0.029z4– 0.412zG – 0.029z8
. (46)

— O. OI5Z1O + o.000866z’~
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TABLE I TABLE 11

LooPs TAKEN ONE AT A ‘TIME LOOPS TAKEN T~vo AT A TIME

L Taken One at a Time

.4D’
DC’
B~ ‘
CB’
a-lB CD
.4 ‘D’C’B
.4BA ‘D
A D’C’D
BCB’A’
CDC’B’
DA BA’D’C’
.4 B CB’.-I ‘D’
B CD C’B ‘A ‘
CDAD’C’B’
D.4B CB’.-l ‘D’ C’
AB CD C’B’A ‘lY
B CDA D’ C’B’.-l ‘
CDAB.4 ‘D’ C’B ‘

Transmittance L Taken Two at a Time

(.4 D’)(B A’)
(BA’)(CB’)
(CB’)(DC’)
(DC’) (AD’)
(A D’)(B’C’)
(B.4 ‘ ) (C’D)
(ABA ‘D’) (’CD C’B’)
(DA D’C’)(BCB’A’)
(.4 BCD)(A’D’C’B’)
.4 BA’D’(C’D+B’C)
BCB’.4’(AD’+C’D)
CD C’B’(AD’+B.4’)
D.4D’C’(BA+CB’)
(.4 BCB’.-D’)(C(D)D)
(B CD C’B’.4’)(.4D’)
(CDAD’C’B’)(BA’)
(/7.4B.4 ‘D’C’J (CB’)

Transmittance

TABLE III TABLE IV

LooPs TAKEN THREE AT A TIME LooPs TAKEN FOUR AT A TIME

— —

Loops Taken Three at a Time I Transmittance Loops Taken Four at a Time I Transmittance

(AD’) (BA’)(CB’)
(BA ‘) (CB’) (DC’)
(B’C) (DC’) (AD’)
(C’D)(AD’)(B.4’)
(.4BA ‘D’) (C’D) (B’C)
(B CB’.4’)(AD’)(C’D)
(CD C’B’)(AD’)(B.4’)
(DA D’C’) (BA ‘) (CB’)

(.4 D’)(B.4’)(CB’)(D C’)
I

r:,sZi

Letter Input Node Designation of nzth Forward Path*
—

B CD
BA ‘D’
BA’D’C’D

B B.4’D’C’B’CD
BCB’.4’D’
B CB’.-l ‘ C’D
B CD.4D’
B CD C’B’.4 ‘D’

TABLE V

EVALUATION OF ND~

D’C’D
D’C’B’.4’BCD
D’ABCD

D’ D’

I D’C’B’CD

1$,.”

~zy

* In this table each transmittance has a common factor xy’ which has been factored. The value of x is also given in (1 7).
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Slit~Coupled Strip Transmission Lines

S. YAMAMOTO, s~uDEN’r =MB% =% T. AZAKAMI, MEMBER,IEEE, AND K. ITAKURA

Absfract—Two types of slit-coupled strip-line configuration are

presented which are especially useful for the realization of multi-

section components using printed-circuit techniques. The slit-

coupled configurations described consist of a pair of strips oriented

face to face and either parallel or perpendicular to the outer ground

planes. Coupling is achieved through a longitudinal slit. Exact con-

formal mapping solutions of the even- and odd-mode characteristic

impedances are arranged in the forms of the design equations for

both parallel and perpendicular cases. In order to facilitate design,

nomograms are presented for the parallel case which give the physi-

cal line dimensions in terms of the even- and odd-mode character-

istic impedances. Furthermore, the exact design equations for both

parallel and perpendicular broadside-coupled strip configurations,

which are considered to be special cases of the slit-coupled configura-

tions, are presented. Formulas for the terminating lines are also

included. The proposed parallel-coupled strip transmission line con-

figurations permit smooth variation of coupling and applications to a

wide variety of circuit components.
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trical Communication Engineering, School of Engineering, Osaka
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INTRODUCTION

A

NUMBER of approaches to the distributed

coupling effect between parallel conductors have

been proposed, and applications have been made

to the various circuit components, such as filters [1]-

[4], directional couplers [5]-[9], channel separation

filters [10]– [12 ], phase shifters [13], delay equalizers

[14], [15], and hybrid circuits [16] -[18]. Lfost of these

components make use of multisection-coupled trans-

mission lines in order to provide the desired circuit per.

formances over a wide frequency range. Typical con-

figurations of the coupled transmission line multisection

components are illustrated in Fig. 1. Combinations of

these connecting types are also employed. Usually the

canonical coupled sections to be connected have differ-

ent coupling characteristics and close coupling is re-

quired in many practical cases.

Simple coupled strip-line configurations of the close

coupling type, applicable to printed-circuit construc-

tions, are the broadside-coupled configurations [19]

shown in Fig. 2 (a) for the parallel case, and in Fig. 2 (b)

for the perpendicular case. While design equations are

available [19], [20], they are not suited to the realiza-


