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The Transient Analysis of Certain TEM Mode
Four-Port Networks

G. F. ROSS, SENIOR MEMBER, IEEE

Abstract—This paper presents the transient analysis of certain
four-port TEM mede microwave networks. Flow graph techniques
are employed to determine in closed form the system function be-
tween two given ports. This representation reveals the pole-zero
pattern of the component which is used to graphically obtain the
amplitude spectrum (CW response).

In the time domain, the impulse response (the inverse transform of
the system function) is used to determine the step modulated re-
sponse of the network at its resonant frequency. This proves to be a
particularly easy task for certain symmetrical networks. The flow
graph technique is illustrated by analyzing three often used micro-
wave networks (namely; the ring hybrid, the 3-dB branch line cou-
pler, and the branch line phase shifter), and an estimate is made of
their “‘settling times” for a step modulated input.

Experimental methods are introduced which permit an investi-
gator to generate a 0.2 nanosecond pulse and/or a microwave step
modulated source. These test functions are then used to critically
evaluate the theoretical results in the laboratory.

I. INTRODUCTION
T HE CONCEPTS of linear systems as they apply

to lumped networks are well known. Terms such

as the impulse and step response or system func-
tion of a network have well-defined meanings and their
importance is understood. The terminology and con-
cepts of linear systems as they apply to microwave net-
works, however, have received only limited attention.
Getsinger [1], for example, studied the impulse and step
response of certain transmission line networks with the
aid of a computer. The purpose of this paper is to show
how the fundamental notions of linear system analysis,
including the use of flow graphs, can be applied to the
analysis of distributed networks. This approach yields
a very convenient formulation for a particular class
of microwave structures which operate in the TEM
mode resulting in closed form solutions.

The properties of microwave structures can be found
from a solution of Maxwell’s equations subject to appro-
priate boundary conditions. In general, these are linear
partial differential equations involving the three spatial
directions x, y, and z of the electric field (E) or the mag-
netic intensity (H) and time ¢. Certain geometrical con-
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figurations, namnely “two-wire lines” or their conformal
equivalent, are able to operate with E, and H, equal to
zero (where it has been assumed that z is the direction
of propagation). These are called TEM modes, and net-
works capable of supporting them are commonly called
TEM components. From an academic viewpoint no
real structure can operate strictly in this mode since the
presence of resistance in the structure demands that E,
be nonzero. In practice, however, E, may be made much
smaller than the other components of E and the concept
of a TEM mode is useful.

The distinguishing characteristics of TEM mode
propagation are that the concepts of voltage and current
can be legitimately applied and that the performance
of a TEM mode component can be described by a
coupled pair of linear partial differential equations in-
volving only the two independent variables z and ¢

Many commonly used TEM mode components such
as four-port hybrids, directional couplers, etc., employ
lengths of uniform TEM transmission lines (i.e., the
inductance and capacitance/unit length are constants,
independent of z) between junctions. A uniform TEM
line has the following two-port system function: the
amplitude spectrum is constant, independent of fre-
quency; the phase function is linear with frequency, im-
plying that the uniform line introduces no dispersion in
the time domain. In particular, the impulse response is
simply a delayed impulse.

Where TENMI lines are interconnected to form junc-
tions, the impulse response between specified ports, in
general, consists of an infinite train of impulses whose
areas are functions of the reflection coefficients at these
junctions. In particular, where the line lengths between
junctions are integral multiples of a given length the
impulses are uniformly spaced and the impulsive re-
sponse is given by

L

h) = 2. At — k1) 1)

B=1
where

Ay is a function of the reflection coefficients at the
junction
8(f) is the Dirac delta function
7 is a time delay depending on the geometry of the
network and the propagation constant of the
medium.
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When the impulse response of a linear, time invariant
network consists of a train of impulses of varied weight-
ing, the response to an input f(¢) may be found conveni-
ently by appropriately weighting and delaying replicas
of the input signal f(f). In particular, if the impulse
train is uniformly spaced No/2¢ seconds apart, the re-
sponse to a step modulated signal of the form

F() = sin wet-u(t) 2)
where
w0 = 2nfy =
Ao

can be found throughout any given half period by a
simple addition. This follows since the phase difference
between weighted replicas of the input signal is either
zero or 180°.

In this paper, the transient responses of certain TEM
components are evaluated in the time domain by excit-
ing the network with a step-modulated signal at a car-
rier frequency corresponding to the nominal operating
frequency of the network, and measuring their respec-
tive “settling” times. In the frequency domain, the amp-
litude spectrum is obtained graphically from the pole-
zero pattern of the network. The pole-zero pattern is
found by factoring the numerator and denominator of
the system function (i.e., the inverse transform of the
impulse response).

In Section II of this paper an analysis technique is
presented for determining in closed form the system
function of a matched four-port coupler consisting of an
interconnection of three-port TEM mode junctions.
The technique is illustrated in Section 11l where three
commonly employed microwave networks are analyzed.
Section 1V discusses experimental methods devised for
verifying the analysis technique. The results and con-
clusion are summarized in Section V.

II. THE ANALYSIS TECHNIQUE

Flow graph techniques (as opposed to conventional
matrix methods), are chosen as the primary analysis
tool because 1) they afford a clear physical representa-
tion of the interaction of reflections between junctions,
and 2) by application of a simple formula they permit an
evaluation of the overall response or system function
of the network in closed form, thus revealing the pole-
zero pattern of the system. This approach is not limited
to the analysis of symmetrical networks [2], but can
be applied to solving more general network configura-
tions. Previous applications of flow graph techniques
have been limited to the single-frequency analysis of
microwave networks [3], [4].

The flow graph representation of a given network is
not unique. That is, a network may be represented by
several flow graphs each having equal validity. Some
graphs may, conceptually, be easier to visualize or con-
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struct. This will be demonstrated in the examples offered
in Section I11. A flow graph representing the intercon-
nection of four three-port TEM mode junctions forming
a four-port network is shown in Fig. 1. The output ports
of the network are assumed matched to the impedance
of the driving source which for convenience has been
normalized to one ohm. In the discussion that follows
the reference to “ports” refers to the physical network,
while the reference to “nodes” refers to the topological
representation of the network, namely, the flow graph.
Each port in the network is represented by two nodes in
the flow graph, for example, 4 and A’. This is required
since waves traveling in a clockwise (cw) direction in
the network may experience a different reflection coeffi-
cient at a port than waves entering the same port from
a counterclockwise (ccw) direction. The signal flow is
described as follows:

An incident (impulse) voltage entering port A is par-
tially reflected (due to mismatch) while the two trans-
mitted impulses travel in a cw direction toward port B
and simultaneously in a ccw direction toward port D.
In the graph cw signals travel along the outer square
entering the unprimed nodes; ccw signals travel along
the inner square entering the primed nodes. When the
transmitted impulse reaches port B, for example, a
fraction of the energy is reflected back to port A while
the transmitted impulse continues on to port . The
impulse reflected toward port 4 now travels in a ccw
direction and in the graph enters node A’. Part of this
signal is re-reflected toward port B (in a cw direction)
therefore again entering node B in the graph forming
the closed loop (BIA’kE). The portion of the signal trans-
mitted beyond node A’ travels in a ccw direction toward
node D’ resulting in similar reflections between nodes A
and D’. This process is continued until the transmitted
signals from nodes B’ and D enter nodes 4’ and A,
respectively, and the process repeats. The values of the
branch transmittances (for example, a, 8, ¢, - - ) in
Fig. 1 are chosen to be the Laplace transforms of the
voltage transfer coefficients between nodes. Since the
impulse response of each branch is a delayed impulse,
the Laplace transforms of the voltage transfer coeffi-
cients are of the form

a=qa(p) =der )

where @’ is real and a function of the characteristic
impedances of the interconnecting lines at a junction;
7 depends on the length and propagation constant of the
line; and p=0+jw, the complex frequency variable.
The equation at each node is simply

Eincident + Ereflecbed = Etra.nsmitted- (‘l)

At node 4, for example (4) becomes

a(p) + y(p) + i(p) = a(p). ®)
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Fig. 1. Flow graph for the four-port network.

Since primed and unprimed nodes having thesame
letter designations, physically, represent the same port
or junction in the network, special care must be exer-
cised in introducing the excitation and taking the out-
put from the graph. For example, if the excitation were
introduced directly into the nodes (4, A'), representing
the input port, two false signals would appear at the
output port C. This follows since injection at these nodes
would produce an initial voltage at the output port of
(ifu) + (abi) + (kbt) + (efu) volts as indicated in Fig. 1.
From the actual network it is clear that the initial
voltage must be (abt) + (efie) volts. To prevent this from
occurring, the input excitation weighted by the appro-
priate branch transmittances is introduced into the
nodes which follow 4, A’ for both the cw and ccw waves.
To obtain the output signal at port C, the outputs from
both node C and C’ must then be combined. Mason’s
formula [5], or reduction theorem, can be used to
evaluate the graph. The formula states that transmis-
sion H between any two nodes in the graph is given by

g=-= (6)

where

H,, is the product of the branch transmittances of
the mth forward path

A=1—=2Li+ 2 Li— > Li+ - (=1)r X L.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

NOVEMBER

L, is the product of the branch transmittances of
nontouching loops taken » at a time
7 is an integer
#, is the number of closed loops
A,,=the value of A for that part of the graph not
touching the mth forward path.

The use of this formula is demonstrated in the Ap-
pendix. In particular, when the line lengths between
junctions are integral multiples of a given length, the
system function representing the transmission from
ports 4 to C is given by

Hea(p) = 20 2, )

and for the class of TEM mode components is a mero-
morphic function. Thus, Hes(p) is the ratio of two in-
finite polynomials in p, or

g (p— p2
Hea(p) = :
g (= 21 (8

This {function can also be expressed as an infinite train
of exponentials by dividing the numerator of (7) by its
denominator. This result can also be obtained by taking
the Laplace transform of (1),

Hea(p) = £|:lz(t) = i At — kr)-}

=D Ayerhn, )
k=1
Equating (8) and (9), one obtains
H (0 — $9) 5
L}l‘*& = Ayerbr, (10)
II & — 29 =

j=1

It is clear from (10) that if p =p, is a root of either the
numerator or denominator of (7) then

27
p=Pa+jT’”’ (11)
is also a root, where # is an integer. Therefore, the poles
and zeros of the system function are periodic in the
complex p plane, and are infinitely denumerable. The
introduction of the complex transformation

g = ¢Pr (12)
results in the periodic poles in the $ plane coalescing
into a finite number of poles in the z domain. The system
function then becomes the ratio of two finite polyno-
mials in z.
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e N(2)
H(z = e7) = ). Ay = . (13) o0
P D(z) g ¥ s
The transformation also maps the jw axis in the p plane ol
onto the unit circle in the z plane; the left-half plane & =
(LHP) maps outside the unit circle. Thus, the amplitude
spectrum, defined as the magnitude of the system func- y4 WZ2
tion, can be obtained in a conventional manner [6] by R
graphically evaluating H¢a(2) on the unit circle Ly 8 22
Aca(w) = | Hea(a) [ameior. (14) o
y C

[t should be noted that in sampled data system analysis,
it is conventional to define the s transform by introduc-
ing the transformation z=e*?". This transformation
maps the LHP inside the unit circle, and the poles and
zeros of the system function are crowded into a confined
region [7]. To increase the accuracy of the graphical
evaluation the transformation given in (12) is used.

The flow graph representation offered in Fig. 1 for the
four-port can be extended to include the general
matched network containing an interconnection of #
TEM mode three-port junctions. The graph for this
configuration would consist of two concentric # sided
polygons having 2z nodes: # nodes for cw and # nodes
for ccw waves with interconnecting loops between nodes
as shown in Fig. 1. For example, the topological repre-
sentation for a four-port branch-line coupler of three
branches consists of two concentric hexagons with two
directed interconnecting loops at each node.

TII. APPLICATIONS

In this section the analysis technique will be illus-
trated by determining the transient behavior of three
commonly employed microwave components; namely,
the ring hybrid, the 3-dB branch line coupler, and the
branch line phase shifter.

A. The Ring Hybrid

The ring hybrid is employed as a sum and differencing
network in many microwave system applications [8].
In other instances it is used as a matched power di-
vider. The ring hybrid is shown in Fig. 2(a) and is
described by the normalized single frequency scattering
matrix

0O 1 0 1
11 0 —1 0
y = — (15)
V210 -1 0 1
i 0 1 o
where
b =Sa

a is the set of incident voltages
b is the set of reflected voltages.

Two in-phase signals at f, entering ports 4 and C sum
coherently at port D (the sum port) and null at port B
(the difference port). Equation (15) is valid only at the
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Fig. 2. Flow graph for the ring hybrid and 3-dB branch

line coupler.

frequency fy, for which the line length between junctions
are 1 or & wavelengths.

The flow graph for the ring hybrid [see Fig. 2(a)] is
a specialized version of the graph of the four-port net-
work shown in Fig. 1. Here, network symmetry results
in many of the transmittances being equal. The trans-
mittances of the graph are evaluated as follows.

The reflection coefficient IV at each junction is de-
fined in terms of the “surge impedance” of the lines,
and is given by

I’ = Z—Zi (16)
Z 4+ Zy

where

Zo is the characteristic impedance of the driving
line

Z is the terminating impedance of the line (i.e.,
the surge impedance of two lines in parallel

Zo, Z are real numbers.

For example, a wave launched into the network is
attenuated by the factor &’ =1+4T'y' where I'’ is defined
as the reflection coefficient for a Zg equal one ohm line
driving two Z,=+/2 ohm lines in parallel. The trans-
mitted cw or ccw waves leaving junctions within the
network are attenuated by the factor y’=1-+T,'where
T, is defined as the reflection coefficient for a Zy= /2
ohm line driving a one ohm and a +/2 ohm line in paral-
lel. In terms of their Laplace transforms, the branch
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transmittances are given by
¥ = x2(p) = de 7 = &'z
{F1 = T(p) = Ty'z
fy=y@) =yer =)
AP, = Ta(p) = Ty

(an

I

where

7 is the time required for an impulse (wave) to propa-
gate \o/4 meters.

o 2—\/5, L 2+/2
PT TV T 1+

—1 2
F2/:._——:; y’:._——*;.
14 /2 14+ /2

Note that four branches of the graph must contain an
additional factor of 22 (e.g., branches BC, B'C’, CB’,
and B'C) to account for the increased line length in
these branches.

The system functions Hpa(2) and Hea(2) for the ring
hybrid may be found by solving the graph shown in Fig.
2(a) with the aid of Mason’s formula (6). For example,
the function Hp4(z) can be evaluated with the aid of
a desk calculator as shown in the Appendix where the
denominator of the graph is found to be

D) =1 — 0.5147z2 — 0.02942* — 0.4125% — 0.029z"

— 0.015z'0 + 0.000865'=, (18)

The numerator is given by

Npa(z) = 0.4855(1 — 0.8282% + 0.51475* — 0.51475°

— 0.14152% — 0.03251). (19)
In similar fashion
Npa(z) = 0.485z(1 — 0.5862% + 0.2725* — 0.7572°
+ 0.10z% — 0.0295'9). (20)

The formation of the graph in Fig. 1 assures that both
the polynomials N(z) and D(z) have the common
factor (1 =2%). This serves as a useful check of the results
since substitution of z2=1 into (18) and (19) or (20)
must yvield 0/0. It can be seen that the error introduced
by a desk calculator is small.

The impulse response is obtained by simply dividing
(19) and (20) by (18) and inverting (term by term) the
resulting polynomial in z. Thus,

hoal) = 3 Ay <z — 2k — 1) g) 1)
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where
T =4dr = ﬁ
[

A4, = 0485
As = — 0.153
A3 = 0.186

and

ha(l) = i A5 <z — (2m — 1) %) (22)
m=1

where
4, =0.485
Az = — 0.034.
d; =

0.128

These responses are plotted in Fig. 3. The step modu-
lated response d(t) of the network at fo=4¢/\, follows
directly from (21) or (22). For example, consider the
voltage dpa(t). Assuming the first cycle of the carrier
frequency is positive, it can be seen that 180° later the
second term appears with a negative amplitude which is
the correct polarity to add directly to the initial wave.
360° after the initiation of the step modulated signal,
the third term begins with the correct phase to add
coherently with the first two waves. The resonant build-
up in the ring hybrid is shown in Fig. 4. The asymptotic
value of the envelope of the magnitude of dpa(t) is
therefore

= 0.485 4 0.153 + 0.186 — - - -
= (.707 volts

l dDA (t)asymptote [

which is the single frequency value of the voltage at
resonance. The envelopes of the step modulated re-
sponses at ports D and 4 are shown in Fig. 5. It can be
seen from the figure that both responses “overshoot”
their asymptotic value. There is an approximately 16
percent overshoot in the sum arm of the ring. The
“settling time,” or the time required for the magnitude
of the envelope of the step modulated response to settle
within £ 5 percent of its steady-state value is about 3
RF cycles; for example, 3 nanoseconds at 1000 Mc/s.

The roots of the system functions Hpa(z) and Hea(z)
can be obtained on a desk calculator using Descartes’
method [9]. The results are

Ki(z + 2.93 + j3.7)(s2 — 0.068 & j1.22)

Hpa(z) = 23
pa(2) (g — 20.318)(z* + 1.387 + j4.463) (* 4+ 0.529 + j1.525) (23)
and
K (22 — 1.587 4+ j4.67)(z2 0.38 + 71.118
HBA(Z) = . / ( d ) (24)

(2 — 20.318)(2 + 1.387 + j4.463)(z* + 0.529 + j1.525)
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The poles and zeros of both system functions are plotted
in Fig. 6 in the 22 plane (where 22=¢~277), The amplitude
spectrum A4 (w) is obtained graphically by forming the
ratio of the product of vector magnitudes from the zeros
to a point on the unit circle to the product of the poles
to the same point on the unit circle. A plot of A pa(w)
is shown in Fig. 7 where the output voltage at resonance
has been normalized to one volt. As shown in Fig. 7, the
ratio of the voltage output at resonance to that at zero
frequency is equal to /2. This follows since at zero
frequency the one ohm resistances from arms B, C, and
D are all in parallel, and for an incident voltage of one
volt the generator voltage must equal two volts; hence,

NZ)
v 2 -~
@) _ — = V2. (25)
Vdc %f
2 X
141

More will be said about the utility of the pole zero dia-
gram when the results for the branch line coupler are
presented.
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B. The Branch Line Coupler

The 3-dB branch line coupler shown in Fig. 2(b) is
often used as the basic building block in RF beam steer-
ing networks for electronic scanning radar systems. The
hybrid phasing or Butler matrix is an example of
multiple beam forming network employing 3-dB line
couplers [10]. The single frequency normalized scatter-
ing matrix of the coupler is given by

(26)

+5 1

and is valid at the frequency for which the line lengths
between junctions are a quarter of a wavelength [11].
The flow graph for the coupler is similar to the general
graph shown in Fig. 1. The symmetry of the junction
in two orthogonal planes results in many of the trans-
mittances being equal. In this graph I'y is defined as the
reflection coefficient for a Zy=1/+/2 ohm line driving
two one ohm lines in parallel (that is, junctions B and D
for cw wawves, or junctions 4 and C for ccw waves). Sim-
ilarly, T'y’ is defined for a Zy=1 ohm line driving a one
ohm line in parallel with a 1/4/2 ohm line. The corre-
sponding transmitted waves at each junction are

¥ =14+T/ and » =1+4T¢ 2n
x=ale T = 'z
Iy =Ty2

1 1 (28)
y=7yer =y
Fz = F2,Z

where

7 is the time required for an impulse to propagate

No/4 meters

22 22
P1,=-————~—_; = ——

242 1+ 2
1 \/2 ’ 2
I‘2=_——-—-_:; Vo= e—

2+ 2 2+ 2

The system functions Hp4(z) and Hes(z) can be found
from the graph to be

D(z) = 1 — 0.40252 — 0.5581z% — 0.0688z° + 0.02943°
Npa(z) = 0.485z[1 — 0.51482% — 0.31352% — 0.171535]

Nea(z) = 0.48522[1.1716 — 0.68642% — 0.483z¢4] (29)
where
]VBA (2) AVCA (Z)
Hpa(z) = ; Hea(z) = .
D(z) D(z)

By long division one obtains

Hpa(5) =0.4855(1—0.115240.2024— 008655+ .0425+ - - - )
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and
Hea(z) =0.485z2(1.17 — 0.2222+0.0824— 000625 — - - - ). (30)

The impulse response or the inverse transform of (30)
is plotted in Fig. 8: the step modulated response shown
in Fig. 9 follows. Once again the asymptotic value of the
magnitude of the envelope of the response approaches
0.707 volts. For example,

| 540 ssymptote| = 0.485(1 + 0.11 -+ 0.20 + 0.08 + - - )

= 0.707 volts. 31)
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I dpa (t)[ is a monotonic increasing function with a
settling time of approximately 13 cycles: | dea(t)| over-
shoots about 2 percent and has a settling time of 1 cycle.
The system functions given in (30) may be written in
factored form as

Ci(22 + 1.41 + 1.96)

]{BA(Z) .
(22 — 5.825) (s> + 2.245 + j0.893)

l

and

Ca(z? + 2.31
Hea(z) = (e ) . (32)
(52 — 5.825)(s% + 2.245 4 ;0.893)

where C; and C, are constants. The pole-zero diagram
obtained from (32) is plotted in Fig. 10: the amplitude
spectrum obtained from this diagram together with the
results for the ring hybrid is shown in Fig. 6. In general,
the pole zero plot is useful in describing, simultaneously,
the relative behavior between networks in either the
time or frequency domains. As can be seen in Fig. 10,
around zero frequency the poles pi, ps and zeros z; and
2, act like dipoles and approximately cancel. Only pole
ps predominates. Therefore, it is reasonable to expect the
response around zero frequency to be similar to that of
a simple single tuned circuit. At z?=—1 (i.e., the
resonant frequency of the hybrid) it can be shown, ge-
ometrically, that this frequency is a localized maximunt
point of the response.

The pole-zero geometry for the ring hybrid is more
complicated than that found for the branch line coupler.
This might have been expected since the ring does not
possess the same degree of symmetry. One pair of com-
plex poles for the ring hybrid (see Fig. 6) is relatively
close to the unit circle. This suggests that the transient
behavior of the ring will be more susceptible to over-
shoot.

C. The Branch Line Phase Shifter

The branch line phase shifter shown in Fig. 11 is used
often in microwave circuits and in antenna feed net-
works for array systems [12]. It employs a 3-dB branch
line coupler whose output ports 2 and 3 are short cir-
cuited at a given distance L from the output reference
plane. At the resonant frequency of the coupler, a 1-volt
signal incident on port 1 results in a I' volt signal into a
matched load at port 4, where IP' equals unity: the
network is lossless. T' is a complex number whose phase
angle is a function of L. The distance L may be varied
electronically by employing diodes as shown in the
figure.

The 3-dB branch line coupler was analyzed in Section
I11-B where the transmission from ports 4 to B and
A to C was evaluated. To analyze the phase shifter
shown in Fig. 11, use will be made of the results ob-
tained in Section I1I1-B; however, a different flow graph
technique will be employed. This is advisable since the
introduction of short circuits at ports B and C intro-
duces too many additional loops taken “#” at a time
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when evaluating the flow graph shown in Fig. 2(b). The
flow graph will be formulated {rom the frequency-
dependent scattering matrix of the network. That is,

b = S(p)a (33)
where
b,
b2
by
L b4
mar

22

is the set of reflected voltages at each port

is the set of incident voltages at each port.
as
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Fig. 10. Pole-zero plot for a branch line coupler.
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Fig. 11. The flow graph for a branch line phase shifter.
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S(p) is the 4 by 4 complex frequency scattering ma-
trix of the 3-dB branch line coupler with matrix coeffi-
cients .S;;(p). The ports 4, B, C, and D have been re-
labeled 1, 2, 3, and 4, respectively, to adhere to conven-
tional matrix notation. From the symmetrical proper-
ties of the 3-dB branch line coupler it is clear that

Hoa(p) = S51(p) = Sus(p) = Sau(p) = Saxlp) =
Hpa(p) = Sai(p) = Sua(p) = Sus(p) = Ssa(p) =7 (34)
and also

Hpa(p) = Su(p) = Su(p) = Sas(p) = Ssap) =
Hya(p) = Su(p) = Sas(p) = Sas(p) = Sus(p) = 5.  (35)

I

il

The transmissions Hp4(p) and Huu(p) were not previ-
ously evaluated in Section I1I-B but are required for
this analysis. They were evaluated using the flow graph
of Fig. 2(b), with the proper modifications necessary
for coupling into and out of the graph. After factoring
out the common root of z2=1 from the numerator and
denominator of each transfer function, one obtains

0.56862% 4+ 0.2355z*

T 1 4 0.5980z2 + 0.0399z* — 0.02893°

, 0.4853z 4 0.23555° + 0.08332° 36)
1+ 0.598022 + 0.0399z — 0.028925

y = 0.3432z 4 0.4020z% 4+ 0.058925

1 4 0.59802? 4 0.0399z* — 0.02892°
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and
—0.4142 — 0.473122 + 0.0121z%* 4 0.07092¢
1 4+ 0.5980z% -+ 0.0399z¢ — 0.02893°

where

g = P as before.

As a result of the short circuits as ports 2 and 3, the
output signals at these junctions are totally reflected
with opposite signs and become the incident voltages
as and as, respectively.

The flow graph for the complete branch line phase
shifter is thus a topological representation of (33) with
the applicable boundary condition; namely,

adyg = — sz’
4y = — bsZ' (37)
7' = eg—p(2Lle)

where L is the distance to the diode short circuit.

The flow graph of the phase shifter is also shown in
Fig. 11. In terms of the graph parameters it can be
shown, using (6), that

Z'[(x* + )32 — 2re(1 + s27)]
14 252" + (Z2)2(s* — v%)
To evaluate Hy(2), the values for «, #, v, and s given
in (36), must be substituted into (38). Numerically, this

is an awkward manipulation resulting in a numerator
consisting of 27 terms and a denominator of 29 terms.

H41(Z) = (38)
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branch line phase shifter, L =0 and L =Xy/4.

The result is of the form

Hul?) = (39
D(z)
where
Na(z) = [0.3432z 4 0.8125z° + - - - -+ 5 X 107%7]
+ Z/[—0.2844z — 1.379728 + - - - — 2 X 107%"7]
+ (2/)2[0.0589z + 0.47253% 4 - - -3 X 10~%7]
and

D(z) = |1 4+ 1.7945> + - - - + 104
+ 7'[—0.8284 — 1.9370z2 + - - - - 10~4315]
+ (2"2[0.1716 + 0.37672° + - - - 10-415]

Sclecting the length L to the diode short circuit com-
pletely determines the system function Hu(z). To evalu-
ate the impulse response, N(z) must be divided by D(2)
in (39). This operation was performed by a digital com-
puter because of the numerical complexity of the ex-
pression. The resulting polynomial in g was used to de-
termine the modulated step response of the phase
shifter for L=0, L=X\o/8, L=2\¢/4, and L=23\,/8. The
results are presented in Fig. 12(a)-(d), respectively,
where they are compared to the response of the matched
3-dB branch line coupler analyzed in Section ITI-B. Tt
can be seen that the settling time deteriorates with
increasing line length L, and approaches approximately
5 RF cycles for L =3\y/8; for example, 5 nanoseconds at
fo=1000 Mc/s.

The amplitude spectrum was not evaluated from the

ROSS: TRANSIENT ANALYSIS OF FOUR-PORT NETWORKS

537

pole-zero pattern of (39) because of the high order of
the polynomials. Instead, the digital computer was used
to substitute values for the radian frequency, and the
results appear in Fig. 13(a) for L=0, L=2A,/8. The
phase functions were also obtained and are plotted in
Fig. 13(b). These nonlinearities in Fig. 13(a) and (b)
suggest that the branch line phase shifter is likely to
introduce considerable distortion when used to process
wideband signals.

IV. TeEsT FUNCTIONS AND EXPERIMENTAL RESULTS

A. Test Functions

The purpose of this section is to describe the experi-
mental techniques used to verify the theoretical results
presented in the previous sections. 1t was shown in these
sections that the impulse response of a network is a par-
ticularly important theoretical concept, but it is clear
than an impulse function can neither be generated nor
displayed in the laboratory. There are, however, two
test functions which are of practical importance and are
simply related to the impulse function. They are 1) the
unit pulse of duration A and 2) the unit step function.
For example, assume a TEM component (as described
in III) is excited by a unit pulse of duration A, and the
response 7(¢), a “pulse train,” is measured. Analytically,
7(#) can be found using (1) to be

r(f) = pAQ*h() = [u(l) — u(t — A)]* D At — k)
=1
= > Agfult — kr) — ult — A — kr)] (40)
E=1
where
A =1 ] LA
=0 |/>a
* indicates convolution
k() is the impulse response of the network
A, are the unknown coefficients of the impulse re-

sponse.

1f A <7 successive output pulses will not overlap and the
amplitudes of pulses in the train are a direct measure of
the 4, coefficients.

Often it is more convenient to generate a very fast
step function as opposed to a narrow pulse. The re-
sponse of a linear, time invariant network to this input
is approximately the integral of the impulse response.
This result can also be used, directly, to find the
response to any other input by emploving the Duhamel
integral.

Another input which has considerable practical sig-
nificance is the step modulated signal described by (2).
This test signal has its principle spectral components
concentrated around the nominal operating frequency
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of the component: the spectrum of the unit pulse and
the unit step functions have their maxima at zero fre-
quency. Thus, the test results obtained using a step
modulated function can be interpreted directly at the
microwave frequencies while the other two test func-
tions must be further manipulated, mathematically.

It was shown in the illustrative examples that the im-
pulse response of a symmetrical TEM mode network con-
sists of a train of impulses where each impulse is sepa-
rated by one-half of the resonant RF period. For exam-
ple, at fo=1 GHz, this spacing equals one-half nano-
second. Thus, if the unit pulse is employed as the
test source, its duration should be A< 0.5 X 10~9 seconds.
If the test signal approximates the unit step function,
its rise time should also be less than 0.5 X 10~? seconds.

The step function can be approximated by using a
tunnel diode pulser. The rise time of the resulting output
signal is approximately 150 picoseconds and its magni-
tude is 0.25 volts. This signal is fed to the component
under test and the response is displayed on a wideband
sampling oscilloscope. A particularly useful instrument
which can be appropriately connected to make trans-
mission measurements of this type is the HP#1014A
Reflectometer [13]. The unit contains a step function
generator, a sampling oscilloscope, and appropriate
synchronization and calibration circuitry. The output
signal from the step generator is shown in Fig. 14(a).

The step function generated by the reflectometer can
be used to generate a very short pulse with the aid of
the network shown in Fig. 14(b). It can be shown that
the unit step response of this network is a pulse of 1/2
volt amplitude and duration A, equal to 2L/¢, where L
is the length of the 25 ohm stub and ¢ is the speed of
light in the medium [14]. The pulse forming network
was constructed using strip line techniques. The output
from this network is shown in Fig. 14(c). Note that the
resulting pulse width measured at the half power points
is approximately 200 picoseconds.

The stub concept can be extended to generate a step
modulated signal where the buildup time of the wave-
form is less than 1/4 RF cycle. This generator is shown
in Fig. 15(a). It consists of a cascade connection of
TEM mode “T” networks similar to the one shown in
Fig. 14(b). The first two stubs which are of equal length
are short-circuited. Succeeding stubs are open circuited
and are of increasing length. The output from the last
“T” section is fed into a low-pass filter (LPF) and then
to the network under test. It can be shown that the
number of square cycles NV generated at the output of
the kth stub is given by [15]

N = 202 41)
while the output voltage amplitude V,is given by
Vo = 27% volts. (42)

The cutoff frequency of the LPF is selected to attenuate
the odd harmonics (i.e., round off the corners of wave-
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form). A 16 cycle, 1300 MHz waveform generated using
this technique is shown in Fig. 15(b).

It should be noted that in the network shown in Fig.
15(a) there are reflections between junctions due to
waves traveling in the back direction that eventually
are re-reflected toward the output terminal. If the line
lengths between stubs, however, are made longer than
twice the length of the last stub, these undesired re-
flections are far removed from the trailing edge of the
generated waveform.
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B. Experimental Results

1) The Ring Hybrid: An L-band ring hybrid de-
signed to operate at 1315 MHz was selected for test.
The unit used a strip line construction with air as the
dielectric; thus, responses are expected to be separated
by 0.38 nanoseconds at the output port. The experi-
mental results obtained using the step generator output
of the HP Model 1014A reflectometer are shown in
Fig. 16(a) and (b) for the transmission between the
ports 4 and D and B, respectively. These results must
be compared with the integral of the results already
presented in Fig. 3. It can be seen that the amplitude
and sign of the various steps that were obtained agree
(at least qualitatively) with the theoretical results. The
lack of resolution in the pictures is attributed to the
finite rise time and overshoot in the step generator.
When the step modulated source shown in Fig. 15 is
connected to the network under test, the results [see
Fig. 16(c) and (d)]| agree with the responses predicted
in Section III.
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Fig. 18. The step and pulse response of a branch
line phase shifter, L=»o/4.

2) The Branch Line Coupler: The step response and
the pulse response (i.e., generated by using the network
shown in Fig. 14) are shown in Fig. 17(a) and (b). A
3-dB branch line coupler designed to operate at 1315
MHz was also constructed in strip line with an air di-
electric having responses separated by 0.38 nanoseconds
which are experimentally verified. It can be seen that
the amplitude of each pulse in Fig. 17(a) and (b) are in
good agreement with the results predicted in Fig. 8.
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3) Branch Line Phase Shifter: To experimentally
verify the theory of the branch line phase shifter extra
line lengths with short circuited terminations were
added at the output ports of the coupler designed to be
resonant at 135 MHz. Lowering the resonant frequency
of the coupler by a factor of ten significantly improves
the experimental accuracy by reducing the time domain
aliasing errors. The line lengths to the short circuit were
adjusted to be one-quarter wavelength. The relative
amplitudes of successive impulses can be obtained
theoretically by dividing Nii(2) by D(z) in (39). The
results are

Hii(z) = 0.343z 4 0.1972% — 0.6242° +- 0.061327

—0.1242° + - - -. (43)

The experimental results shown in Fig. 18 closely con-
firm these results. It should be noted that a discrepancy
does occur in the magnitude of the 4th pulse in Fig. 18;
namely, an amplitude of 0.10 volt was observed as com-
pared to the theoretically predicted value of 0.062 volt.
The discrepancy is probably due to tolerance errors in
the construction of the component. The amplitude of
the 4th pulse is due to the subtraction of large and
almost equal reflections and hence sensitive to junction
tolerances.

V. SUMMARY

This paper has presented a technique for analyzing
the transient behavior of certain four port TEM mode
networks by revealing the system function in closed
{orm. Although the examples presented in Section III
concentrated on symmetrical networks it is clear that
the technique presented applies equally well to unsym-
metrical network configurations.

It was shown how the inverse transform of the system
function (i.e., impulse response) of a TEM mode net-
work was a very useful concept since the response to any
other input could be expressed as an appropriately
weighted and displaced replica of the input. In par-
ticular it was shown that the step modulated response
for certain symmetrical networks at the resonant fre-
quency was relatively simple to obtain. By factoring
the system function one could obtain the pole zero
plot which lead readily to a graphical evaluation of the
amplitude spectrum. Further, the relative locations of
the poles and zeros were used to gain physical insight
regarding the transient and single frequency behavior
of various devices.

Several time domain experimental techniques were
introduced to help verify the theoretical results. They
involved the use of the step, pulse, and step modulated
functions. Since the distances between junctions in
microwave networks are usually a fraction of the reso-
nant wavelength, the testing requires a facility with
fractional nanosecond pulse technology. The step modu-
lated source proved to be a particularly useful test
source since it tested the components directly at the
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microwave resonant frequency and did not require fur-
ther mathematical manipulation.

The test sources were used to excite the three com-
ponents theoretically analyzed in Section III; namely,
the ring hybrid, the 3-dB branch line coupler, and the
branch line phase shifter. The experimental results
agreed closely with that predicted by the theory.

It was indicated how the flow graph technique could
be extended to find the impulse response of a matched
interconnection of # three port junctions. The graph
for this network port would contain 2z nodes: # nodes
for cw and # nodes for ccw waves and would resemble
the graph shown in Fig. 1. Admittedly, the evaluation
of this graph using (6) (i.e., the calculation of nontouch-
ing loops taken “r” at a time) becomes awkward.

In closing it should be noted that this paper is an
abridged version of a study which included the transient
analysis of other TEM components, waveguide com-
ponents, cascade connections of these components, and
also the analysis of a completely distributed feed net-
work for an array system (viz., the Luneberg Lens) [16].

APPENDIX
Frow Grara EVALUATION oF THE RiNG HYBRID

In the appendix the evaluation of the Flow Graph
representing the ring hybrid shown in Fig. 2(a) is pre-
sented. The solution to this graph for the system func-
tion Hps(2) is found by evaluating the individual terms
in the numerator and denominator of (6). For conve-
nience these terms are presented in tabular form. The
solution is as follows, Tables I-1V.

Substituting the values of T'; and v as defined in (17)
into the preceding tables, and adding terms in accord-
ance with (6) yields (after grouping similar powers of 2)
the denominator of the required system function,

D(z) =1 — 0.541722 — 0.0294-4z* — 0.41214°
— 0.02944z% — 0.01515z'° 4 0.000862'%.  (44)

The evaluation of the numerator of the system func-
tion Npa(z) follows in a similar manner. It can be seen
that the input branch terminating on port D’ produced
5 forward paths: the input branch terminating on port
B produces 8 forward paths for a total of 13 forward
paths. These forward paths are identified in Table V.

Grouping numerator transmittances according to
similar powers of 2, it follows that

Nopa(z) = 0.485z(1 — 0.8282 + 0.5147z% — 0.514738
— 0.145128 — 0.032319) (45)

and finally the system function Hp4(2) is obtained by
dividing (45) by (44)
0.485(1 — 0.8282% 4 0.514722* — 0.514728
— 0.14152% — 0.032210)
1—0.51475%2 — 0.0295* — 0.4122° — 0.02928 '
— 0.0152'° + 0.000866z"2

Hpi(z) = (46)
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Loors TAreN ONE AT A TIME

TABLE 11
Loops TAkEN Two AT A TIME
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L Taken One at a Time Transmittance L Taken Two at a Time Transmittance
AD’ Is? AD)Y(BA") Tyt
e T's? (BAY(CB) ot
BA' T2 (CBHY{DC") Tyizt
CB, I‘2ZZ4 (DC/)(AD’) I‘24
ABCD Aizg? (4D (B'C Tyt
A'D'C'B gt (BA)Y(C'D) INS
ABA'D VI g2 (ABA'DNY(CDC'B") VA0t
AD'C'D i (DAD'C'Y(BCB'A") R s
BCB'A’ i W (ABCD)Y(A'D'C'B") 8zt
CDC'B’ Y2Ia2et ABA'D'(C'D+B'C) VM2 (T2 +-T%)
DABA'D'C’ VT2 BCB'4"(AD'+C'D) V254 2T57)
ABCB'A'D’ VT2t CDC'B'(AD'+B4") VI 224(2T,2)
BCDC(C'B'A’ YT p2pt DAD'C'(BA'4+CB') VT2 (Do 4 Totyt)
CDAD'C'B’ YT 2t (ABCB'A’'D"Y(C'D) Vit
DABCB'A'D'C! V6224 (BCDC'B’ A" (AD") yizilot
ABCDC'B'A'D’ YT 221 (CDAD'C'B')(BA") yigilyt
BCDAD'C'B'A’ VT2 (DABA'D'C')(CB') ¥zt
CDABA'D'C'B’ T2z

TABLE II1 TABLE IV

Loors TakeN THREE AT 4 TIME

Loors TaAkeN Four At A TiME

Loops Taken Three at a Time Transmittance Loops Taken Four at a Time ‘ Transmittance
(AD")(BA"(CB) Izt (4D")(BA")(CB")(DC") { It
(BAHY(CB")Y(DC) 248
(B'Cy(DC")(AD" Tzt
(C'DY(AD"(BAY T's
(ABA'D"Y(C'D)Y(B'C) YL 585t
(BCB'4")(AD")(C'D) B N
(CDC'B"Y(AD")(BA") 2T o8z
(DAD'C'YBA’)(CB) 2T o8zt

TABLE V
EVALUATION OF Npy4
Letter Input Node | Designation of mth Forward Path* H,.* Am
BCD 52y? 1 -T2 —yiz?
BA ,D’ sz 1 —1122—I‘2234—~}’2I‘22S4+I‘24Z4
BA'D'C'D y2z2 1—Ts2%¢
B BA'D'C'B'CD To2yist 1
BCB'A'D’ 3Tz 1-T%?
BCB'A'C'D YTy 1
BCDAD' YT a52 1
BCDC'B/A'D Yozt 1
D'C'D w2 1 — T2 — Myt — 12,250 LTyt
D'C’'B’A’BCD V52T 1
D'ABCD VT ez?
D’ D’ 1 1 =272 — T2t — yig?
— 23/2{‘2254 —_ y4I‘?234 +F24
+ 2Tt - 2y yigt — Toft
D'C'B'CD 3T 1Ty

* In this table each transmittance has a common factor xy” which has been factored

. The value of x is also given in (17).
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Slit-Coupled Strip Transmission Lines

S. YAMAMOTO, STUDENT MEMBER, IEEE, T. AZAKAMI, MEMBER, IEEE, AND K. ITAKURA

Abstract—Two types of slit-coupled strip-line configuration are
presented which are especially useful for the realization of multi-
section components using printed-circuit techniques. The slit-
coupled configurations described consist of a pair of strips oriented
face to face and either parallel or perpendicular to the outer ground
planes. Coupling is achieved through a longitudinal slit. Exact con-
formal mapping solutions of the even- and odd-mode characteristic
impedances are arranged in the forms of the design equations for
both parallel and perpendicular cases. In order to facilitate design,
nomograms are presented for the parallel case which give the physi-
cal line dimensions in terms of the even- and odd-mode character-
istic impedances. Furthermore, the exact design equations for both
parallel and perpendicular broadside-coupled strip configurations,
which are considered to be special cases of the slit-coupled configura-
tions, are presented. Formulas for the terminating lines are also
included. The proposed parallel-coupled strip transmission line con-
figurations permit smooth variation of coupling and applications to a
wide variety of circuit components.
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INTRODUCTION
i§§ NUMBER of approaches to the distributed

coupling effect between parallel conductors have

been proposed, and applications have been made
to the various circuit components, such as filters [1]-
[4], directional couplers [5]-[9], channel separation
filters [10]-[12], phase shifters [13], delay equalizers
[14], [15], and hybrid circuits [16]-[18]. Most of these
components make use of multisection-coupled trans-
mission lines in order to provide the desired circuit per-
formances over a wide frequency range. Typical con-
figurations of the coupled transmission line multisection
components are illustrated in Fig. 1. Combinations of
these connecting types are also employed. Usually the
canonical coupled sections to be connected have differ-
ent coupling characteristics and close coupling is re-
quired in many practical cases.

Simple coupled strip-line configurations of the close
coupling type, applicable to printed-circuit construc-
tions, are the broadside-coupled configurations [19]
shown in Fig. 2(a) for the parallel case, and in Fig. 2(b)
for the perpendicular case. While design equations are
available [19], [20], they are not suited to the realiza-



